
International Journal of Heat and Mass Transfer 49 (2006) 359–365

www.elsevier.com/locate/ijhmt
Modelling of heat transfer in an infiltrated granular bed
in view of the difference of phase temperatures

V.I. Kovenskii *, Yu.S. Teplitskii

A.V. Luikov Heat and Mass Transfer, Institute of the National Academy of Sciences of Belarus, 15 P. Brovka Str.,

Minsk 220072, Belarus

Available online 14 November 2005
Abstract

Physically substantiated boundary conditions for problems of heat transfer in infiltrated granular beds based on the
two-temperature model which allow for the absence of interphase heat transfer on boundaries are formulated. It is
shown that classical Dankwerts conditions would be applicable for gas. The problem of porous cooling at the boundary
conditions of the 2nd and 3rd kind on the outer boundary is solved in a new formulation.
� 2005 Elsevier Ltd. All rights reserved.
There are a number of thermal processes in technol-
ogy taking place in infiltrated granular beds, in which
temperature drops between gas and particles have to
be taken into account not treating a granular bed as a
homogenous heat-conducting medium. First of all these
are various non-stationary processes of granular bed
heating/cooling by a flow of gas (liquid). Another exam-
ple is the occurrence of temperature drops in motion of a
heat flux toward gas when elements of the granular bed
are produced from high-heat-conducting material (por-
ous cooling of aircraft surfaces, blades of high-tempera-
ture gas turbines, etc.). For describing heat transfer in
such cases the two-temperature model is used which in
the simplest one-dimensional case has the form [1]:
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The coefficients kf and ks which are included in (1)
and (2) and which determine the intensity of heat distri-
bution over the phases are determined as [2]

kf ¼ k0f þ ke; ð3Þ

where eddy conductivity of the gas phase [2] is

ke ¼ 0:03cfqfud. ð4Þ

Thermal conductivity of an ensemble of particles (a
frame of the bed) is expressed by the formula [2]

ks ¼ k0f ð12þ 0:85 � Re � PrÞ ð5Þ

Note that thermal conductivity of the frame of the
bed is mainly determined by heat conductivity of non-
flow zones located near the points of contact between
particles and it almost does not depend on heat conduc-
tivity of the particles. The volume coefficient of the inter-
phase heat transfer is calculated as follows:

Nu� ¼
a�d

2

k0f
¼ NuS ind; ð6Þ

where the coefficient of the interphase heat transfer a* is
determined by the formulas [3]
ed.



Nomenclature

cf, cs thermal conductivity of gas and particles,
J/kgK

d particle diameter, m
h height of the granular bed, m
Pe = cfqfu/a*h;
Pef = cfqfuh/kfe;
Pes = cfqfuh/ks (1 � e) Peclet numbers
Pr ¼ cfmf=k

0
f Prandtl number

q0, q1, q2, qw heat fluxes, W/m2

Re = ud/mf Reynolds number
Qw ¼ qw=cfqfuðT 0 � T 0Þ
St = a/cfqfu; Stw = aw/cfqfu Stanton numbers
S cross-section of the bed, m2

Sin specific surface of particles (phase interface
in the unit volume of the bed) in the case
of packing of spheres Sin = 6(1�e)/d

t time, s
t0 ¼ tu=h
Tf, Ts temperature of gas and particles, K
T0 inlet gas temperature, K
T 0
0 gas temperature (at x !�0), K

T0 temperature of external incident flow, K
u velocity of gas filtration rated at the full

section of the bed, m/s
x coordinate

Greek symbols

a* bulk coefficient of interphase heat transfer,
W/m3 K

a* coefficient of interphase heat transfer,
W/m2 K

a, aw coefficients of heat exchange between the
granular bed and environment, W/m2 K

e bed porosity
hf = (Tf � T0)/(T

0 � T0), hs = (Ts � T0)/(T
0 � T0)

dimensionless temperatures
k0f molecular thermal conductivity of gas,

W/m K
kf, ks effective thermal conductivities of gas and

solid phases, W/m K
mf kinematic viscosity of gas, m2/sec
n = x/h dimensionless coordinate
qf, qs densities of gas and particles, kg/m3

Indices

e vortex
f gas
in interphase
s particles
w surface (at x = h)
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Nu ¼ a�d

k0f
¼ 0:4

Re
e

� �2=3

Pr1=3;
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e
> 200 ð7Þ

Nu ¼ 1:6� 10�2 Re
e

� �1:3

Pr1=3;
Re
e
6 200 ð8Þ

As the analysis of examples of use of the system (1)
and (2) for modelling of specific processes [2,4] has
shown, the fundamental unresolved problem is a formu-
lation of physically adequate boundary conditions. For
this reason, in the present work the problem on formu-
lation of correct boundary conditions is posed for Eqs.
(1) and (2) based on the analysis of the interphase
exchange process.

Consider the process of heat transfer, when gas
(liquid) with temperature T0 arrives at the disperse bed
(Fig. 1).

(1) The boundary condition at x = 0 (gas)

Consider an elementary volume of the bed dV = Sdx
near the boundary x = 0 (Fig. 2). The gas balance of
heat fluxes in this volume is

ðq1 � q0ÞS ¼ a�
S in

ðT s � T fÞdSin. ð9Þ
The value of the interphase surface in the considered
volume is

dSin ¼ SindV ¼ SinS dx. ð10Þ

Based on Eqs. (10) and (9) can be written as

q1 � q0 ¼ a�ðT s � T fÞdx. ð11Þ

From Eq. (11) the sought-for boundary condition
obtained for dx ! 0 follows:

q1 ¼ q0. ð12Þ

Based on q0 ¼ cfqfuT
0
0 and q1 ¼ cfqfuT fðt; 0Þ� kfe

oT f ðt;0Þ
ox ,

this boundary condition finally takes the form

x ¼ 0; cfqf

u
e
ðT f � T 0

0Þ ¼ kf
oT f

ox
ð13Þ

Condition (13) is defined as the well-known Dank-
werts condition [5] used in modelling of transfer pro-
cesses in the granular bed considered as a homogeneous
medium. In this connection an important conclusion
may be drawn in the context of the present work: in for-
mulating the boundary conditions for the two-tempera-
ture model, phases on the bed boundaries can be



Fig. 1. The coordinate system, directions of heat and mass fluxes, and the character of distribution of phase temperatures inside the
granular bed.
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considered as isolated from each other because of the
absence of interphase heat transfer.

(2) Boundary condition at x = 0 (particles)

In the absence of heat interaction of phases and in
view of preliminary heat of gas (Fig. 1), the boundary
condition takes the form:

x ¼ 0; ð1� eÞks
oT s

ox
¼ aðT s � T 0Þ. ð14Þ

Note that with the use of ksð1� eÞ oT s

ox jx¼0 ¼
cfqfuðT 0

0 � T 0Þ; condition (13) is

x ¼ 0; cfqfuðT f � T 0Þ ¼ ekf
oT f

ox
þ ð1� eÞks

oT s

ox
.

ð13aÞ

(3) The boundary condition at x = h (gas)

In view of phase independence, the Dankwerts condi-
tion [5] can also be used here for the gas exit from the
disperse medium:
x ¼ h;
oT f

ox
¼ 0; ð15Þ

which testifies that the whole heat flux transferred by the
gas is equal to convective one. Point that in [4] the
hypothesis

x ¼ h; T s ¼ T f ð15aÞ

was used which is not in agreement with (15).

(4) The boundary condition at x = h (particles)

Consider three cases.

(a) Absence of an outer heat flux

This situation is common for non-stationary heat trans-
fer. Probably, the sought-for condition has the form:

x ¼ h;
oT s

ox
¼ 0. ð16Þ

Note that in [2] the equality

x ¼ h; ks
oT f

ox
¼ a�

Sin

ðT f � T sÞ ð16aÞ



Fig. 2. Concerning the deduction of the boundary condition for gas at x = 0.
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was used which, in the context of the present work,
seems to be incorrect.

(b) The boundary condition of the 2nd kind

In this case, the outer heat flux q2 is specified. Write the
balance of heat fluxes through the considered boundary
based on (15):

x ¼ h; �ksð1� eÞ oT s

ox
þ cfqfuT f � cfqfuT

0 þ q2 ¼ 0.

ð17Þ

Note that in writing (17) it was presumed for simplicity
that at the outlet the gas is heated up to the temperature
of the environment T0 (Fig. 1). In view of the so-called
injection effect [6] qw = q2 � cfqfu(T

0 � T(t,h)), the
unknown boundary condition

x ¼ h; ksð1� eÞ oT s

ox
¼ qw ð18Þ

is obtained. In [4], instead of (18) the condition

x ¼ h; ksð1� eÞ oT s

ox
þ kfe

oT s

ox
¼ qw ð18aÞ

was used which transforms to (18) if condition (15) is
satisfied.

(c) The boundary condition of the 3rd kind

On the basis of (18) unknown condition

x ¼ h; ksð1� eÞ oT s

ox
¼ awðT 0 � T sðt; hÞÞ ð19Þ

is obtained. Note that the coefficients a and aw are calcu-
lated by the standard procedures [7].

Write the system (1), (2), (13)–(16), (18) and (19) in the
dimensionless form:

ohf
ot0

þ ohf
on

¼ 1

Pef

o2hf
on2

þ 1

Pe
ðhs � hfÞ ð20Þ
ohs
ot0

¼ 1

Pes

o
2hs
on2

þ 1

Pe
ðhf � hsÞ. ð21Þ

The boundary-value conditions are

hfð0; nÞ ¼ uðnÞ; hsð0; nÞ ¼ f ðnÞ ð22Þ

n ¼ 0; hf ¼
1

Pef

ohf
on

þ 1

Pes

ohs
on

ð23Þ

ohs
on

¼ St � Peshs ð24Þ

n ¼ 1;
ohf
on

¼ 0. ð25Þ

(a) The boundary-value condition of the 2nd kind is

ohs
on

¼ Pes � Qw. ð26Þ

In the absence of heat flux:

ohs
on

¼ 0. ð26aÞ

(b) The boundary condition of the 3rd kind is
ohs

on

¼ Stw � Pesð1� hsÞ. ð27Þ

As follows from (20)–(27), the regularities of heat
transfer in this system are determined by six similarity
numbers: Pe, Pes, Pef, St, Stw, and Qw.

Under the conditions of stationary heat transfer the
obtained equations

dhf
dn

¼ 1

Pef

d2hf
dn2

þ 1

Pe
ðhs � hfÞ ð28Þ

0 ¼ 1

Pes

d2hs
dn2

þ 1

Pe
ðhf � hsÞ ð29Þ

are simplified.
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Fig. 3. Distributions of phase temperatures (a, b, c) and differences of phase temperatures (d, e, f) inside a thin granular bed. Solid
lines—gas; dashed lines—particles. (1) Pes = 0.01; (2) 0.0215; (3) 0.0464; (4) 0.1; (5) 0.215; (6) 0.464; (7) 1; (8) 2.15; (9) 4.64; (10) 10. (a)
and (d) boundary conditions of the 3rd kind; (b) and (e) boundary conditions of the 2nd kind; (c) and (f) calculation by the model of
[4].
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The boundary conditions are

n ¼ 0; hf ¼
1

Pef

dhf
dn

þ 1

Pes

dhs
dn

ð30Þ

dhs
dn

¼ St � Peshs ð31Þ

n ¼ 1;
dhf
dn

¼ 0 ð32Þ

The boundary condition of the 2nd kind is

dhs
dn

¼ Pes � Qw; ð33Þ

The boundary condition of the 3rd kind is

dhs
dn

¼ Stw � Pesð1� hsÞ. ð34Þ

Note that the system (28)–(34) is the general determi-
nation of the important applied problem of porous cool-
ing [6].

Figs. 3 and 4 show the results of the numerical solu-
tion of problem (28)–(34). The distributions hf, hs, and
hs � hf are obtained for various Pes numbers and two
values of h/d:h/d = 6.7 (a thin bed) and h/d = 67 (a thick
bed). The initial values of the dimensionless parameters
are given in Table 1.
Figs. 3c, f, and 4c, f give the results of calculations
by (28) and (29) with the boundary conditions adopted
in [4]:

n ¼ 0;
1

Pes

dhs
dn

þ 1

Pef

dhf
dn

¼ hf ; ð35Þ

dhs
dn

¼ St � Peshs; ð36Þ

n ¼ 1; hf ¼ hs; ð37Þ

1

Pes

dhs
dn

þ 1

Pef

dhf
dn

¼ Qw. ð38Þ

As it is shown in Figs. 3 and 4, the distributions hf, hs,
and hs � hf almost have no difference for the boundary
conditions of the 2nd and 3rd kinds. The Pes number
dependence (heat conduction ks) is quite significant in
all cases. It is important to note that the condition of
the equality of phase temperatures at the outlet adopted
in [4] greatly distorts the temperature fields, especially at
large values of Pes (small ks). The character of the distri-
butions hs � hf shown in Figs. 3f and 4f clearly denotes
the artificiality of the assumption that Ts = Tf at x = h.

Integral consideration of characteristic features of the
heat regime inside the disperse bed can easily be made
on the basis of the equation
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Fig. 4. Distributions of phase temperatures (a, b, c) and differences of phase temperatures (d, e, f) inside the thick granular bed. Solid
lines—gas; dashed lines—particles. (1) Pes = 0.1; (2) 0.215; (3) 0.464; (4) 1; (5) 2.15; (6) 4.64; (7) 10; (8) 21.5; (9) 46.4; (10) 100. (a)–(f)
see Fig. 3.

Table 1
Dimensionless parameters used in calculations

Parameter Thin bed Thick bed

St 0.24 0.24
Stw 0.23 0.23
Qw 0.18 0.18
Pe 0.57 0.057
Pef 63.2 632
Pes 0.01–10 0.1–100
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cfqfuðT fðhÞ � T 0
0Þ ¼

Z h

0

a�ðT s � T fÞdx; ð39Þ

which is obtained due to integration of (1) with account
for the Dankwerst conditions (13) and (15). With the use
of (39) the general equation of heat balance in the bed
for the boundary condition of the 2nd kind takes the
form

qw ¼ cfqfuðT fðhÞ � T 0
0Þ þ aðT sð0Þ � T 0Þ ð40Þ

The quantity WT ¼
R h
0
a�ðT s � T fÞdx=qw, which in [4]

was given the name of the parameter of porous cooling
efficiency, on the basis of (39) and (40) becomes

WT ¼ 1� aðT sð0Þ � T 0Þ
qw

ð41Þ
The expression WT for boundary conditions of the
3rd kind is similar. In Fig. 5, calculations of WT for both
systems of the boundary conditions are given. As is seen,
values of WT and the character of the dependence on the
Pes number substantially differ for the boundary condi-
tions of [4] and for those adopted in the present work. It
is interesting to note that if the hypothesis of the equality
of the phase temperatures at the outlet from the bed
practically does not distort the temperature fields of
phases at large values of Pes (Figs. 3 and 4), the quantity
WT turns out to be more sensitive even at large values of
Pes. It should be noted that the hypothesis on Ts = Tf at
x = h adopted in [4] leads to the underestimated values
of Ts � Tf and, as a consequence, to the lower values
of the efficiency parameter WT (Fig. 5).

As a result of the present work, the physically justi-
fied boundary conditions (13)–(15), (18) and (19), which
are based on the account of the fact that the phases on
the boundaries are isolated, are formulated. The depen-
dence of the quantities Tf, Ts, Ts � Tf, and WT on ther-
mal conductivity of the frame of the bed and its height
are revealed. It is shown that the hypothesis on the
equality of phase temperatures at the outlet from the
bed adopted in [4] has a limited area of application
and can be used justifiably only at small values of Pes
(large values of thermal conductivity of the frame of
the bed).



Fig. 5. Pes dependence of the efficiency parameter WT; (1) boundary conditions of the 2nd and 3rd kinds for a thin granular bed; (2)
boundary conditions of the 2nd and 3rd kinds for a thick granular bed; (3) the model of [4] for a thin granular bed and (4) the model of
[4] for a thick granular bed.
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